315 research outputs found

    Levosimendan for the prevention of acute organ dysfunction in sepsis

    Get PDF
    BACKGROUND Levosimendan is a calcium-sensitizing drug with inotropic and other properties that may improve outcomes in patients with sepsis. METHODS We conducted a double-blind, randomized clinical trial to investigate whether levosimendan reduces the severity of organ dysfunction in adults with sepsis. Patients were randomly assigned to receive a blinded infusion of levosimendan (at a dose of 0.05 to 0.2 μg per kilogram of body weight per minute) for 24 hours or placebo in addition to standard care. The primary outcome was the mean daily Sequential Organ Failure Assessment (SOFA) score in the intensive care unit up to day 28 (scores for each of five systems range from 0 to 4, with higher scores indicating more severe dysfunction; maximum score, 20). Secondary outcomes included 28-day mortality, time to weaning from mechanical ventilation, and adverse events. RESULTS The trial recruited 516 patients; 259 were assigned to receive levosimendan and 257 to receive placebo. There was no significant difference in the mean (±SD) SOFA score between the levosimendan group and the placebo group (6.68±3.96 vs. 6.06±3.89; mean difference, 0.61; 95% confidence interval [CI], −0.07 to 1.29; P=0.053). Mortality at 28 days was 34.5% in the levosimendan group and 30.9% in the placebo group (absolute difference, 3.6 percentage points; 95% CI, −4.5 to 11.7; P=0.43). Among patients requiring ventilation at baseline, those in the levosimendan group were less likely than those in the placebo group to be successfully weaned from mechanical ventilation over the period of 28 days (hazard ratio, 0.77; 95% CI, 0.60 to 0.97; P=0.03). More patients in the levosimendan group than in the placebo group had supraventricular tachyarrhythmia (3.1% vs. 0.4%; absolute difference, 2.7 percentage points; 95% CI, 0.1 to 5.3; P=0.04). CONCLUSIONS The addition of levosimendan to standard treatment in adults with sepsis was not associated with less severe organ dysfunction or lower mortality. Levosimendan was associated with a lower likelihood of successful weaning from mechanical ventilation and a higher risk of supraventricular tachyarrhythmia. (Funded by the NIHR Efficacy and Mechanism Evaluation Programme and others; LeoPARDS Current Controlled Trials number, ISRCTN12776039.

    Prognostic factor from MR spectroscopy in rat with astrocytic tumour during radiation therapy

    Get PDF
    Objective: To investigate the relationship between the tumour volume and metabolic rates of astrocytic tumours using MR spectroscopy (MRS) during radiation therapy (RT). Methods: 12 healthy male Sprague-Dawley® rats (Sprague–Dawley Animal Company, Madison, WI) were used, and a tumour model was created through injecting C6 tumour cells into the right caudate nuclei of the rats. Tumours grew for 18 days after the injection and before the imaging study and radiation treatment. MRS was performed with two-dimensional multivoxel point-resolved spectroscopy sequence using a GE Signa VH/i 3.0-T MR scanner (GE Healthcare, Milwaukee, WI) equipped with rat-special coil. RT was given on the 19th day with a dose of 4 Gy in one single fraction. The image examinations were performed before RT, and on the 4th, 10th, 14th and 20th days after treatment, respectively. GE FuncTool software package (GE Healthcare) was used for post-processing of spectrum. Results: Metabolic ratios of serial MRS decrease progressively with time after RT. Choline-containing components (Cho)/creatine and creatine phosphate (Cr) ratios immediately prior to RT differed significantly from those on the 10th, 14th and 20th days after RT; both Cho/N-acetyl aspartate (NAA) ratios and NAA/Cr ratios immediately prior to RT differed significantly from those on the 14th and 20th days after RT. A positive correlation between changes of tumour volume and changes of Cho/Cr, lipid and lactate/Cr and glutamate plus glutamine/Cr ratio was observed on the 4th day after RT. Conclusion: MRS provides potential in monitoring tumour response during RT, and the imaging biomarkers predict the response of astrocytic tumours to treatment. Advances in knowledge: MRS is combined with both tumour size and Ki-67 labelling index to access tumour response to radiation.ECU Open Access Publishing Support Fun

    GliomaPredict: a clinically useful tool for assigning glioma patients to specific molecular subtypes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Advances in generating genome-wide gene expression data have accelerated the development of molecular-based tumor classification systems. Tools that allow the translation of such molecular classification schemas from research into clinical applications are still missing in the emerging era of personalized medicine.</p> <p>Results</p> <p>We developed GliomaPredict as a computational tool that allows the fast and reliable classification of glioma patients into one of six previously published stratified subtypes based on sets of extensively validated classifiers derived from hundreds of glioma transcriptomic profiles. Our tool utilizes a principle component analysis (PCA)-based approach to generate a visual representation of the analyses, quantifies the confidence of the underlying subtype assessment and presents results as a printable PDF file. GliomaPredict tool is implemented as a plugin application for the widely-used GenePattern framework.</p> <p>Conclusions</p> <p>GliomaPredict provides a user-friendly, clinically applicable novel platform for instantly assigning gene expression-based subtype in patients with gliomas thereby aiding in clinical trial design and therapeutic decision-making. Implemented as a user-friendly diagnostic tool, we expect that in time GliomaPredict, and tools like it, will become routinely used in translational/clinical research and in the clinical care of patients with gliomas.</p

    Glioblastoma Subclasses Can Be Defined by Activity among Signal Transduction Pathways and Associated Genomic Alterations

    Get PDF
    Glioblastoma multiforme (GBM) is an umbrella designation that includes a heterogeneous group of primary brain tumors. Several classification strategies of GBM have been reported, some by clinical course and others by resemblance to cell types either in the adult or during development. From a practical and therapeutic standpoint, classifying GBMs by signal transduction pathway activation and by mutation in pathway member genes may be particularly valuable for the development of targeted therapies.We performed targeted proteomic analysis of 27 surgical glioma samples to identify patterns of coordinate activation among glioma-relevant signal transduction pathways, then compared these results with integrated analysis of genomic and expression data of 243 GBM samples from The Cancer Genome Atlas (TCGA). In the pattern of signaling, three subclasses of GBM emerge which appear to be associated with predominance of EGFR activation, PDGFR activation, or loss of the RAS regulator NF1. The EGFR signaling class has prominent Notch pathway activation measured by elevated expression of Notch ligands, cleaved Notch receptor, and downstream target Hes1. The PDGF class showed high levels of PDGFB ligand and phosphorylation of PDGFRbeta and NFKB. NF1-loss was associated with lower overall MAPK and PI3K activation and relative overexpression of the mesenchymal marker YKL40. These three signaling classes appear to correspond with distinct transcriptomal subclasses of primary GBM samples from TCGA for which copy number aberration and mutation of EGFR, PDGFRA, and NF1 are signature events.Proteomic analysis of GBM samples revealed three patterns of expression and activation of proteins in glioma-relevant signaling pathways. These three classes are comprised of roughly equal numbers showing either EGFR activation associated with amplification and mutation of the receptor, PDGF-pathway activation that is primarily ligand-driven, or loss of NF1 expression. The associated signaling activities correlating with these sentinel alterations provide insight into glioma biology and therapeutic strategies

    Multi-resolution independent component analysis for high-performance tumor classification and biomarker discovery

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although high-throughput microarray based molecular diagnostic technologies show a great promise in cancer diagnosis, it is still far from a clinical application due to its low and instable sensitivities and specificities in cancer molecular pattern recognition. In fact, high-dimensional and heterogeneous tumor profiles challenge current machine learning methodologies for its small number of samples and large or even huge number of variables (genes). This naturally calls for the use of an effective feature selection in microarray data classification.</p> <p>Methods</p> <p>We propose a novel feature selection method: multi-resolution independent component analysis (MICA) for large-scale gene expression data. This method overcomes the weak points of the widely used transform-based feature selection methods such as principal component analysis (PCA), independent component analysis (ICA), and nonnegative matrix factorization (NMF) by avoiding their global feature-selection mechanism. In addition to demonstrating the effectiveness of the multi-resolution independent component analysis in meaningful biomarker discovery, we present a multi-resolution independent component analysis based support vector machines (MICA-SVM) and linear discriminant analysis (MICA-LDA) to attain high-performance classifications in low-dimensional spaces.</p> <p>Results</p> <p>We have demonstrated the superiority and stability of our algorithms by performing comprehensive experimental comparisons with nine state-of-the-art algorithms on six high-dimensional heterogeneous profiles under cross validations. Our classification algorithms, especially, MICA-SVM, not only accomplish clinical or near-clinical level sensitivities and specificities, but also show strong performance stability over its peers in classification. Software that implements the major algorithm and data sets on which this paper focuses are freely available at <url>https://sites.google.com/site/heyaumapbc2011/</url>.</p> <p>Conclusions</p> <p>This work suggests a new direction to accelerate microarray technologies into a clinical routine through building a high-performance classifier to attain clinical-level sensitivities and specificities by treating an input profile as a ‘profile-biomarker’. The multi-resolution data analysis based redundant global feature suppressing and effective local feature extraction also have a positive impact on large scale ‘omics’ data mining.</p

    Glioblastoma multiforme with oligodendroglial component (GBMO): favorable outcome after post-operative radiotherapy and chemotherapy with nimustine (ACNU) and teniposide (VM26)

    Get PDF
    BACKGROUND: The presence of an oligodendroglial component within a glioblastoma multiforme (GBM) is considered a prognostically favorable factor, but the clinical outcome of patients with glioblastoma multiforme with oligodendroglial component (GBMO) after combined post-operative radiotherapy and chemotherapy has rarely been reported. METHODS: We analyzed overall and progression-free survival in a group of ten consecutive patients initially diagnosed with GBMO between 1996 and 2004 (4.2% of all GBM patients). Median (range) age was 54 (34–73) years, 90% were resected and median radiotherapy dose was 54 (45–60.6) Gy. 80% of patients received post-operative chemotherapy with nimustine (ACNU) and VM26 (teniposide) for a median of 3.5 (1–6) cycles, the remainder were treated with post-operative radiotherapy alone. All specimens were reviewed by an experienced neuropathologist. RESULTS: Neuropathological re-evaluation revealed GBM with an oligodendroglial component of 30% or less in five cases, predominant oligoastrocytic tumors with focal areas of GBM in four patients and WHO grade III oligoastrocytoma with questionable transition to GBM in one patient. Four of ten patients were alive at at 40, 41, 41 and 82 months. The median overall survival (Kaplan-Meier) was 26 months, the 2-year survival rate was 60% (progression-free survival: 9.8 months and 40%, respectively). CONCLUSION: In conclusion, patients with GBMO treated with post-operative radiotherapy and chemotherapy with ACNU/VM26 had a better prognosis than reported for GBM in modern chemoradiation series

    Gene expression profiling of gliomas: merging genomic and histopathological classification for personalised therapy

    Get PDF
    The development of DNA microarray technologies over the past decade has revolutionised translational cancer research. These technologies were originally hailed as more objective, comprehensive replacements for traditional histopathological cancer classification systems, based on microscopic morphology. Although DNA microarray-based gene expression profiling (GEP) remains unlikely in the near term to completely replace morphological classification of primary brain tumours, specifically the diffuse gliomas, GEP has confirmed that significant molecular heterogeneity exists within the various morphologically defined gliomas, particularly glioblastoma (GBM). Herein, we provide a 10-year progress report on human glioma GEP, with focus on development of clinical diagnostic tests to identify molecular subtypes, uniquely responsive to adjuvant therapies. Such progress may lead to a more precise classification system that accurately reflects the cellular, genetic, and molecular basis of gliomagenesis, a prerequisite for identifying subsets uniquely responsive to specific adjuvant therapies, and ultimately in achieving individualised clinical care of glioma patients

    Recommendations for the transition of patients with ADHD from child to adult healthcare services:a consensus statement from the UK adult ADHD network

    Get PDF
    The aim of this consensus statement was to discuss transition of patients with ADHD from child to adult healthcare services, and formulate recommendations to facilitate successful transition. An expert workshop was convened in June 2012 by the UK Adult ADHD Network (UKAAN), attended by a multidisciplinary team of mental health professionals, allied professionals and patients. It was concluded that transitions must be planned through joint meetings involving referring/receiving services, patients and their families. Negotiation may be required to balance parental desire for continued involvement in their child’s care, and the child’s growing autonomy. Clear transition protocols can maintain standards of care, detailing relevant timeframes, responsibilities of agencies and preparing contingencies. Transition should be viewed as a process not an event, and should normally occur by the age of 18, however flexibility is required to accommodate individual needs. Transition is often poorly experienced, and adherence to clear recommendations is necessary to ensure effective transition and prevent drop-out from services

    Detection of a MicroRNA Signal in an In Vivo Expression Set of mRNAs

    Get PDF
    Background. microRNAs (miRNAs) are approximately 21 nucleotide non-coding transcripts capable of regulating gene expression. The most widely studied mechanism of regulation involves binding of a miRNA to the target mRNA. As a result, translation of the target mRNA is inhibited and the mRNA may be destabilized. The inhibitory effects of miRNAs have been linked to diverse cellular processes including malignant proliferation, apoptosis, development, differentiation, and metabolic processes. We asked whether endogenous fluctuations in a set of mRNA and miRNA profiles contain correlated changes that are statistically distinguishable from the many other fluctuations in the data set. Methodology/Principal Findings. RNA was extracted from 12 human primary brain tumor biopsies. These samples were used to determine genome-wide mRN

    Gene expression analysis of glioblastomas identifies the major molecular basis for the prognostic benefit of younger age

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glioblastomas are the most common primary brain tumour in adults. While the prognosis for patients is poor, gene expression profiling has detected signatures that can sub-classify GBMs relative to histopathology and clinical variables. One category of GBM defined by a gene expression signature is termed ProNeural (PN), and has substantially longer patient survival relative to other gene expression-based subtypes of GBMs. Age of onset is a major predictor of the length of patient survival where younger patients survive longer than older patients. The reason for this survival advantage has not been clear.</p> <p>Methods</p> <p>We collected 267 GBM CEL files and normalized them relative to other microarrays of the same Affymetrix platform. 377 probesets on U133A and U133 Plus 2.0 arrays were used in a gene voting strategy with 177 probesets of matching genes on older U95Av2 arrays. Kaplan-Meier curves and Cox proportional hazard analyses were applied in distinguishing survival differences between expression subtypes and age.</p> <p>Results</p> <p>This meta-analysis of published data in addition to new data confirms the existence of four distinct GBM expression-signatures. Further, patients with PN subtype GBMs had longer survival, as expected. However, the age of the patient at diagnosis is not predictive of survival time when controlled for the PN subtype.</p> <p>Conclusion</p> <p>The survival benefit of younger age is nullified when patients are stratified by gene expression group. Thus, the main cause of the age effect in GBMs is the more frequent occurrence of PN GBMs in younger patients relative to older patients.</p
    corecore